Lax pairs for the equations describing compatible nonlocal Poisson brackets of hydrodynamic type, and integrable reductions of the Lamé equations

نویسنده

  • O. I. Mokhov
چکیده

In the present work, the nonlinear equations for the general nonsingular pairs of compatible nonlocal Poisson brackets of hydrodynamic type are derived and the integrability of these equations by the method of inverse scattering problem is proved. For these equations, the Lax pairs with a spectral parameter are presented. Moreover, we demonstrate the integrability of the equations for some especially important partial classes of compatible nonlocal Poisson brackets of hydrodynamic type, in particular, for the most important case when one of the compatible Poisson brackets is local and also for the case when one of the compatible Poisson brackets is generated by a metric of constant Riemannian curvature. The case when one of the compatible Poisson brackets of hydrodynamic type is local and nondegenerate was studied in detail in our previous paper [1], where the corresponding equations were derived and the integrability of these equations was announced. This case is very important, since, as was shown in [1], any solution of these equations generates an integrable bi-Hamiltonian hierarchy of hydrodynamic type by explicit formulae. Moreover, these equations describe an important class of integrable reductions of the classical Lamé equations. Accordingly, in the case when one of the compatible Poisson brackets is generated by a metric of constant Riemannian curvature, the corresponding equations describe integrable reductions of the equations for orthogonal curvilinear coordinate systems in spaces of constant curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville canonical form for compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies

In the present paper, we solve the problem of reducing to the simplest and convenient for our purposes, “canonical” form for an arbitrary pair of compatible nonlocal Poisson brackets of hydrodynamic type generated by metrics of constant Riemannian curvature (compatible Mokhov–Ferapontov brackets [1]) in order to get an effective construction of the integrable hierarchies related to all these co...

متن کامل

Compatible metrics of constant Riemannian curvature: local geometry, nonlinear equations and integrability

In the present paper, the nonlinear equations describing all the nonsingular pencils of metrics of constant Riemannian curvature are derived and the integrability of these nonlinear equations by the method of inverse scattering problem is proved. These results were announced in our previous paper [1]. For the flat pencils of metrics the corresponding statements and proofs were presented in the ...

متن کامل

Compatible nonlocal Poisson brackets

In the present work, the integrable bi-Hamiltonian hierarchies related to compatible nonlocal Poisson brackets of hydrodynamic type are effectively constructed. For achieving this aim, first of all, the problem on the canonical form of a special type for compatible nonlocal Poisson brackets of hydrodynamic type is solved. The compatible pairs of nonlocal Poisson brackets of hydrodynamic type ha...

متن کامل

Frobenius Manifolds as a Special Class of Submanifolds in Pseudo-Euclidean Spaces

We introduce a very natural class of potential submanifolds in pseudo-Euclidean spaces (each Ndimensional potential submanifold is a special flat torsionless submanifold in a 2N-dimensional pseudoEuclidean space) and prove that each N-dimensional Frobenius manifold can be locally represented as an N-dimensional potential submanifold. We show that all potential submanifolds bear natural special ...

متن کامل

On Classification of Integrable Davey-Stewartson Type Equations

This paper is devoted to the classification of integrable Davey-Stewartson type equations. A list of potentially deformable dispersionless systems is obtained through the requirement that such systems must be generated by a polynomial dispersionless Lax pair. A perturbative approach based on the method of hydrodynamic reductions is employed to recover the integrable systems along with their Lax...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002